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We shall consider higher approximations in the theory of strong interaction
of a boundary layer with an external inviscid flow. We refine known results
related to the problems of unsteady gas flow near an infinite plate and
steady flow past a semi-infinite plate (Sections 1 to 6). As a result the
asymptotic representations for the transverse displacement of the plate, or
its form are found, corresponding to a pressure distribution law of & first
approximation.

The influence of viscosity and thermal conductivity of the gas on the flow
field near the body moving with hypersonic speed, as is well known, may be
approximately considered on the basis of the theory of interaction of the
boundary layer with the external inviscid flow region [1] . If, moreover,
the body i1s sufficiently slender, and the Mach number ), &and the Reynolds
number &, of the problem are such that the ratio M _3/ V’R > 1, then the
phenomenon of strong interaction oceurs, in which tHE pressfivé field in the
perturbed flow region is mainly determined by the displacement effect of the
boundary layer and depends to a considerably less extent on the form of the
body sugrace. Examples of plane flows of this type have been considered in
[2and 3].

The construction of the solutions in these papers were based on the match-
ing of the exact (self-similar) solutions of the equations of the boundary
layer and of the equations of small perturbation theory in hypersonic flow.
The matching process of these solutions was carried out only to a first
approximetion. As a consequence of this, there appeared some speclal char-
acter in the behavior of the solution in the intermediate region (at the
outer edge of the boundary layer), where the enthalpy of the gas tends to
zero and the density increases wiihout bound. In references [2 and 3], esti-
mates of accuracy were carried out for the first approximation theory.

The present paper is entirely devoted to the construction of higher appro-
ximations for these problems; or more rigorously, for problems of the asymp-
totic behavior of the flow fleld of a viscous heat—condugting gas beh%nd
shock waves, propagating according to the same law (yfvth and yh,~.xh) in
the limiting case of N — = .

1. Let us consider the one~dimensional unsteady motion of a viscous heat-
conducting gas under the action of an infinite plate, suddenly set to motion
with a velocity having a constant longitudinal component U_ . We assume a

linear relationship for the coefficlent of viscosity and the specific enthalpy
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p=CUh (1.1)
The Navier-Stokes equations for this case may be wrltten as
Ju duy 0 ou oy | ‘22) ?ﬁ_ig(lég)
9(57+v5y_)—5§(h<’71])’ p(, +vay ta =35\t

Yy
(3:+ g};) ax:_{_vg}’ 58y< ) ( ) %k

vy + (?E = Oy p= = 1 —1 ph

Here the velocity components u and v are taken relative to the longi-
tudinal plate velocity Uy, ; the pressure P -— relative to the quantity
pols i the density p - relative to the unperturbed flow density o ; the
specific enthalpy » — relative to the quantity U;‘; the dimensionless
independent variables ¢t and y - relative to the quantities ¢/p_ and
cv, /e, » respectively; and finally, ¢ and y are the Prandtl number and
ratio of specific heats of the gas, resvectively.

Introducing on the basis of the continulty equation the function ¥ ,
defined by the relations

[0t = —pv, op/dy=p (1.3)
we transform system (1.2) to independent variables ¢ and § . As a result,
we have ou s ou i@

_="5fb(ph?ﬁ>)’ 8t+ ‘3“5@(9’1’ %)
h 4
05 = + Pa¢(9h3¢)+93h( \p) +35 (g w) (1.4)
dy r—1
=l G=v =T

The purpose of this paper, as already indicated, i1s the construction of
asymptotic solution to these equations, corresponding to the one-dimensional
motion of a gas behind a shock wave propagating according to the law

y = ct’h (1.5)
The solution 1s to satisfy the no-slipping condiltion
u=1 (1.6)

and the no~heat~flow condition
oh /oY =0 (1.7
on the plate surface ¢ = 0 . Thus, the plate is assumed to be insulated.
2. For the external part of the flow field, adjacent to the shock wave,
the solution has the well known form
2 et
y = t"Yo(v), u=0, v=1t", (v)
s 4 ™
p=t"Py(v), p=Re(v), h=t"Hy(v)
where the independent variable is

-
v =Pt (2.2)
Substituting Expressions {2.1) in {1.4) and keeping the dominant terms

(2.1)
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in these equations, we find the system of equatfons for the well-known self-
similar motion of an inviscid gas

3o + YV = Py, Ry (fevHy' 4 Ho) = 3[3vPy + Py 5 3

Ry =1, S|a¥d —%¥o+Vo=0, Po=[(r—1)/1]Rol,

We note that considering the gas in the outer flow region as inviscid and
non-heat~conducting is correct with a relative error of order t™!, since

the ratio of the neglected terms in (1.4) to the dominant terms 1s of this
order, '

The solution to system (2.3) must satisfy the system of boundary condi-
tlons on the surface of the shock wave, which is propagating according to
Equation (1.5). In the limiting case of flow with ¥_~ = , these boundary
conditions assume the form V,(c) = o

3e

4 9c? 1
V@ = sir PO =g Rol@ =i Ho

R G
GRS
(2.4)

Here the constant o 1s to be determined.

For further use, it 1s important to have a representation of the desired
functions of the external flow for y - O . To obtain these expressions, we
note that the second equation in (2.2) can be integrated with the help of
the last equation to yield

PoRy™ = Agv (2:5)
The constant 4, 1s determined from the boundary condition (2.4)
gc‘/n I\r__i\Y
Ay == 2 _<‘_ 2.6
s You A emny) (2.6)

We use (2.5) and the remaining equations of the system (2.3); now we
obtain without difficulty the following expressions, valid for v - O :

Yo — Yoo + Yoxv1—2/'31 + 0 (Vz—z/:w), Ry = BOOVZ/"“ 40 (vl-H!/BY)
Vo = Voo - Vorvi—2/8Y 4 O (v2-2/3Y), Hy = Hogv2/37 4 0 (vi=2/3%) (2.7)
Py = Py + 0 (v)

The coefficients in these formulas are connected by the relations

3 - 3 3 (/7 -1/Y
Yo = 3712 AP Vg = ZYoo, Vo= 231 —-2) AT Poy
Roo — Ao_l/YPOOI/Y: HOO — ’—]:—:r-—-—i ADI/Ypool—l/Y (28)

3. To study the interior reglon of the flow fleld, we introduce {(as usu~
ally done) the independent variable
N =t (3.1)
To determine the asymptotlc expansions, valid in this reglon, we express
the functions of the external flow in terms of the independent variable of
the inner expansion v = Nt (3‘2)

and pass to the limit ¢ - = for fixed value of ¥ . Using expression (2.7)
we get



Theory of interaction of the boundary layer and a hypersonic flow 773

(3.3)

y = e (Yoo + Y01N1—2/3Y_t—1/2+1/8\’ + O(t!l+1/37)], U= O(t'l)
p = V4 Voo + V01N1—2/37t—1/2+1/37 +0 (t—1+1/av)], p= t~1/2 [Poo + O(t—]‘/’)]
p = }?oolvz/svt—llav 1 ()(t—I/E—I/SY), b= Iioolv—z/avt«1/2+1/37 + ()(t—1+1/37)
These expresslons suggest the form in which to seek the asymptotic solu-
tion for the inner flow region, thus
y = ta/‘ [yO (N) + t-1/2+1[3\'y1 (N) + e ]’ u = u, (N) + t—-l/2+1/3Yu] (N) +_. .,.‘
v= 1", (V) + ¢/, (N)+ -]
p= t—1/2 [po (N) + t—1/2+1/8Yp1 (IV) + .. ‘] (3.4)
p=t""Ipo(N) + e (N) - 0], k= b (N) + 6725 Ry (N - - -
In facv, the matching. of the inner and outer expansions will now be gua-
ranteed, if in accordance with the simple form of the matching principle [4],
the following boundary conditions are satisfied for the function of inner

expansion at ¥ - o
in the first approximation

yO(N)_')Y()O’ Ug (N)—)O, Do (N)—-)Poo, ho(N)-—)O (3.5)
in the second approximation
Y1 (V)= YN gy (N)—0, pi(N)—>0, hy(N)— HpN?/* (3.6)

4, Substituting into the initial equations (1.4) the expansions (3.4)
and keeping the main terms, we obtain the system of equations for the first
approximation, which may be written in the form

Po = T‘ipoho=const, Uy + 4T1) Nuo =0
1 re
—-——T ipo ho + Nho —"T hoz—‘__'_r__i Pou04 (4'1')
1 T—1h __T—i )
yo' = T P’ yo N}’o

Boundary conditions for these equations are (3.5), and also conditions on
the surface of the plate in the form

4 (0) = 1, ¥ 0) = k' (0) =0 (4.2)

i.e. besides the satisfaction of boundary conditions (1.6) and (1.7) we
require that the plate in the first approximation be moved in its own plane.
The formulation of the problem in the first approximation completely agrees
with the problem considered in [2]. Its solution turns out to be quite sim-
ple. PFirst, we note that the second equation in (4.1) integrates by a quad-
rature. Its particular solution, satisfying the boundary conditions, is

p— 1\
o =1 _(2u'rpo ) § exp [—

T—1
=N ]dN (4.3)
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We can then integrate the third equation. However, for determining the
pressure distribution on the surface of the plate there is no need to do
this, For this problem, it suffices to find the expression for yo(N) for
¥ - = , On the basls of the fourth equation in (4.1) we have

[eo]

lim ON:L‘_ighdzv 44

N_)my (V) o 0 (4.4)
0

The integral in this expression is easily calculated with the help of the

third equation in (4.1), if we take into account the boundary condition for

ho (¥) and the exponential decay to zero of this function as ¥ - = (cf.[2]).

As a result, we get 9 1Y
lim = (I—_ £
Jim yo (N) = 225 () (4.5)
Using boundary conditions (3.5), we rewrite this as
_ 2y r—1 o}
YOO - 3‘]’—2(\TE"{P00> (46)

The obtailned relation is Just the boundary condition, which was missing
for the equations of the outer inviscid flow. This condition uniquely deter-
mines the constant ¢ in the equation of the shock wave (1.5) and in the
boundary conditions (2.4), and therefore, it completes the problem in the
first approximation.

5. Let us now turn to the problem of the second approximation. After
substituting the expansions (3.4) in the system (1.4) and equating corre-
sponding terms of the expansion, we obtain a system of linear differential
equations for the functlions in the second approximation.

The second and last equations in (1.4), together with the boundary con-
ditions (3.6), gilve r—1
Pr="—— (Pofy + hop1) =0 (5.1)

After this, on the basis of the first equation in (1.%4) and boundary con-
dition (3.6) for u, we find that u,=0 .

Then the equation for determining the function #,, after some simple
transformations using (5.1) and the results of the first approximation,
assumes the form

v Pope v A g e =0 5.2
Twldhl +4Nh1+6’]'1 ( )

Its solution must satisfy the last boundary condition in (3.6), and also

condition (1.7) on the insulated surface

By (N)— HooN'®, b/ (0)=0  tor N o0 (5.3)
Finally, the equation for function y, has the form
, T—1h (5.4
Yy = — — 9.
Y1 T 7o )

where the function 1y, (¥) must satisfy the first boundary condition {(*) in

*) See footnote on the next page.
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(3.6}.
Integrating successively (5.2) and (5.4}, we find the value of the func-
tion y, (0), which determines the transverse displacement of the plate

y =~ ™"y, (0) (5.5)

We note, that in obtaining the equations of the second approximation, in
the initial eguations were neglected terms whose ratios to the terms kept
were of the order of t~'hA +/v , while in the expansions (3.%), on the basis
of {3.3), the highest order in the neglected terms was {~'/». Thus, the solu-
tion of the problem in the second approximation is correct with a relative
error of the order  1*¥%Y or t /, while the relative error of the first
approximation is cf order '+ 'sr

6. Numerical calculations were carried out for values of y=1,% and
¢ = 1.0,

The system of equations (2.3) for the outer flow field was integrated
with the aim of determining the constants in expressions (2.7) by the Runge-
Kutta method. Equation (5.2) with boundary conditions (5.3), governing the
enthalpy distribution in the boundary layer, was solved by an approximate
iteration method., The calculation of the flow fleld in the inner reglon
(integration of (4.1)) has not been carried out.

The constants o , which define the propagation of the shotk wave, and
po the pressure variation on the surface of the plate, were found as follows:
e = 1.1082, p,= 0.3432 .

The value of the constant i, (0), determining the required transverse
displacement of the plate was found to be 1y, (0) = 0.2362,

T. The equations of plane steady flow of a viscous heat-conducting gas
may be written in the following nondimenslonal form:

oot o)+ alp (- 2+ 205+ 8]
o+ 3+ =5~ 32 + 2+ 3] 0
oot erB) = e 4o 2 2R+ L0050 +
() (G (35 2
TAE=0 =TT

Here the components of the velocity are taken relative to the veloeclty of
the unperturbed stream U , the pressure — relative to the quantity o U 2

©Ywo ?
{where #p_U_? is the dynamlc pressure}, the density — relative to the den-
sity of the unperturbed stream p_ , and the specific enthalpy — relative

to the quantity UGa . The independent variables are taken relative to the

characteristic length L =CUs/pw (1.2)

Here (¢ 1s the proportiocnality constant in the relation between the vis-
cosity coefficient and the enthalpy, which we agaln take to be linear {1.1).

*) It 1s easily verifled that the asymptotic character of the behavior of
the inner expansion functions as ¥ - =» , prescribed by the boundary con-
ditions (3.5§ and (3.6), completely agrees with that which follows from a
direct analysis of the differentlal equations for these functions,
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Introducing the stream function ¢ , defined by the relations

oY/ oz = — po, o/ dy = pu (7.3)

we transform Equations (7.1) to the independent variables x and v

it 43—t = (Lo )[40 (3 — %) — Som ]+

5
oo (2]
pu g +ou gk = pu gy [ o 5 — T (G —ow 55)] + (7.4)
MTRRE S
o = e 2 ] e )+

T O T A Y
'—%’h(g%—f)v%-l—pu%f—p)a

2 2 —
pué\‘—p=1, u‘,,—Z:v, p=7—1ph

The problem will consist in the construction of the asymptotic.solution
of these equations, corresponding to the steady flow of a gas behind a shock
wave with the shape y = cx'h (7.5)

and satisfying boundary conditions on the thermally insulated semi-infinite
surface § = O , whose shape y = r(x) is to be found. These conditions will

have the form o F (2)9h )8
z z
N = Pn 7 (7.6)
8. We start with the asymptotic expansion, valid for the outer part of
the flow, and again confine ourselves to the approximation in which this
part of the flow may be treated as inviscid. We write the expansions in
this region in the form

y=8" Yo +E" )+ -], a—1=E"TUe()+E"Tsi(v)+ )

0= E M WVo() +EMV i)+ -], p=F"[Po(v)+EPi(v) + 01 (81)
p= Ry +E MR (V) + -], h=F"[Ho(v)+ E"H:i(v) + -]

where the independent variables € and v are defined by the relations

=%  p=tn=fvrETO 4] (8.2)

Here the expansion is made in one of the independent variables in order
to obtain (following the method of [5]) the solution to the external invisecid
flow valid in the entire flow field, including the vicinity of the.plate
surface. This 1s necessary because in contrast to the problem considered in
the first part of this paper, the first terms of expansions {8.1) would
represent not the exact solution to the outer inviscid flow, but only its
approximate solution, possessing singularities which are not characteristic
for the exact solution when v - O

u=v=>0,
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By (8.2) we obtain the following Formulas for the derivatives

3 9 3., 8 3 il A 8
“é;—ég"'z'glv—é;+~g-§ (Vli‘lmml:[’n}'a—v‘*%*...
—gnl gty 2 (8.3)

The boundary con&imons for the cuter solution are the conditions on the
shock wave {7.5), which in the 1limiting case W ~ = are

8, O T g 1, -
n=e, y=ct¥ w—l—— gt l— 0@

2('{—{_;{) g.‘i/‘[i”""é'czg-‘/’—{—()(g-l)] (8.4)
90 Ty 9 stk y e
ixmifz[**ﬁcgg"“%‘?(’é‘ﬁ |
=111 =gt [ o 0EY)]

Substituting the expansions (8.1} and (8.3) into the initial system of
equations {7.%)} and the boundary conditions (8.,4) and keeping the dominant
i:erms, we obtain systems of differential equations and boundary conditions
for the first approximation. They are completely equivalent to the problem
of inviscid unsteady one~dimensional flow (2.1) and (2.%), considered in the
first part of this paper. Thus, substituting the independent varlable ¢ by
g , we may use the corresponding formulas of Section 2 without any change.

For the longitudinal) component of the velocity in the first approximation
we have Py

Vo
U, + °+T R = (8.5)
From this

UG == UQ@’\?‘WSY -+ 0 (’Vo) tor v—> O (Um = — ¥ 1 1 Aolhpmlwll.f) (8.6)
g. 'The equations of the second approximation, after some simple trans-
formations using the relations of the first approximation, may be written as

Uy +VVi+Hi+1Ul2=0
3, (WVy) — 3, (W — Y ¥ )V = Py —¥/Py (9.1)
3V (Pyf Po—YRy[ Ro) +v(P1]/ Po—1Ry [ Ry) = — (VI —1/,¥,)
Y+ (Vo + B =iy
WYy — Y1+ Vi —VoUo =3[, (¥ —1/3¥) ¥y
Py= I—?‘E(Reﬂx + HoRy)

In order to eliminate in the second approximation the entropy singulari-
ties (as v - 0) of the order higher than in the first approximation, we may
follow the method of [5] and set in the fourth equation of (9.1)

¥/ =Us+ o 9.2)
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Then this equation becomes
F 1: . 0 (9.3)
Now, these two equations, together with the remaining equations of {9.1),

form a closed system. The boundary conditlons for these equations, by (8.%),
can be written as

Fi(e)=0, Yi()=0, Uy(e)= 1‘288(11 . Vi) =— '32?;i )
P _ 81 c* R 0 8yet
1) =—megrn: HO=0 HE=—ggrm 049

The first of these boundary conditions eliminates the shifting of stream-
lines at the vicinity of shock wave. Equation (9.3) together with condition

{9.4) gives Y (v)=0 (9.5)

The second equation in {9.1) may now be integrated. Its solution satis-
fying the boundary conditlons (9.4%) has the form
T = Dyt 2 Y (v) (9.6)
The simultaneous consideration of Equations (9.1}, {9.2), (9.5) and (9.6),
together with the results of the first approximation {2.5) and {2.7), permits
us to determine the behavior of the functions of the second approximation as
v ~ 0 . Their approximate representation in this region will have the form

‘I’I . \If'n’v'/; _+_ 0 (vl'QISY)’ Ul —_ Ulov~2/3—2/3'¥' + 0 (v—4/3‘f)
Vi = Vv 50 4 0 (v4/37), Py =0 (v'h) 9.7)
Rl = R10V~2/3+2/3Y + 0 (’\’c), Hl = ‘I’fl()'\’”z/:}"?‘}3‘Y + 0 (V~4/37)

where the coefficients in these formulas are related with the coefflclents
of the functions of the first approximation (2.8) through the relations

27c" 9yc'h -
Vo= ———r——, Usp o2 e 2XC qYYp A1
10 16(2—71) 10 BH—NEZ—n oo
3 - 9c'fe .
V10 == —-4(7 :r_ 1) AOI/YVOOP()Ol 17 y RIO == e 16 (2 '—T) AO 1/‘\/1)001/Y
Byeh _
HIO — Te AOI/YPOOI x (9.8)

16(r—1HE2—1)
in which the constent 4, is determined by Equation {2.6).

10. In the inner flow region the dimensionless independent variable of
the order of unity is N r:_lpgﬁa/. (10.1)

To determine the form of the solution in this region, we express the func-
tions of the outer flow in terms of the independent variable of the inmner
expansion n = NE‘V' (10‘2)
and we consider their behavior as £ - « for fixed value of ¥ . To this

end, we first substitute in (10.2) the expansion for the independent varia-
ble n (8.2) and find the following relationship between the independent
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By (8.2) we obtain the following Formulas for the derivatives

3 __a 3., 8 3 e A 8

% =% %t Ve Tt (‘f‘fl"‘”““‘f’l}%‘*w
a . - ’ .
w=t u—-»..-g by o= —. .. (8.3)

The boundary conditions for the outer solution are the conditions on the
shock wave {7.5), which in the 1limiting case W ~ & are

n=c, y=c u—l=— gt I+ 0EY)

3 1y 9 TR -
v = m& ! [1”3‘@025. "roE l)] (8.4)
o 5l ot o)
T+1 9yer - 9 1y -1y
=T, h=apiat w06

Substituting the expansions (8.1} and (8.3) into the initial system of
equations {7.%)} and the boundary conditions (8,4) and keeping the dominant
terms , We obtain systems of differentilal equations and boundary conditions
for the first approximation. They are completely equivalent to the problem
of inviscid unsteady one~dimensional flow (2.1) and (2.%), considered in the
first part of this paper. Thus, substituting the independent varlable ¢ by
g , we may use the corresponding formulas of Section 2 without any change.

For the longitudinal component of the velocity in the first approximation
we have Py

Vo
U, + e 0 | Twi = (8.5)
From this

Up=Uv¥*+0() for v— 0 (er o j’_ 1 Aoll'fpml-.l/'f) (8.6)

g. 'The equations of the second approximation, after some simple trans-
formations using the relations of the first approximation, may be written as

U+ VVi+H + U082 =0
a(Wy) —3i (WY — 1) Vy = P — ¥/ Py 9.1)
oV (Pyf Po—YRy[ Ro) +v(Py/ Po— YRy [ Ro) = — (v¥y —1/,¥))
Y+ (Vo+ ) =¥rvy
3wYy — Yy + Vi —VoUo =3, (W — 1, ¥) Y
P = ’!%1(1?8;1, 1 HoRy)

In order to eliminate in the second approximation the entropy singulari-
ties (as v - 0) of the order higher than in the first approximation, we may
follow the method of [5] and set in the fourth equation of (9.1)

¥/ =Us+ o 9.2)
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1l. Substituting expansion (10.5) in the initial system of equations
{7.4) and equatinf the main terms, we obtain a system of equations for the
first approximation, which may be written as

-1
Po = 1 7 Polty = const (11.1)

‘Y [AN A 1 - I -
71 Potho {oto) " -+ v Nuquy” + ?ﬂ“’i he =0

iapo o (G [ o+ 5 =0

Pololfo” == 1, Py = Uy (3/4310 - 1/4N.1/0’)

Boundary conditions for these equations are (10.6) and also the conditions
on the solld surface, which by virtue of (7.6) and {7.7), can be written as

Yo (0) = uy (0) = hy 0) =0 (11.2)

i.e. we assume that in the first approximation the body 1is a semi~infinite
flat plate. If the Prandtl number ¢ « 1 , then the integral of the equa-
tion of heat influx satisfying the boundary conditions {10.6) and (11.2)

111 b / ! E
* € h[} _%' 112“02 = 1/,2 (11.3)

Below we shall consider only this case. The momentum equation then
reduces to the form

e 1 ; 1 71
Tlil)ouu(aouo) + TNUOU'O -+ —4*17}“‘(1_“02):0 (11.4)

where ln accordance with the third of the boundary conditions {10.6), p,=pR..

Boundary conditions for {11.4) are the second conditions in (10.6) and
(11.2) (*). After determining u,(¥), the function y,(¥) is found by inte~
grating the fourth equation in (11.1), which with the aid of (11.3) and

(11.2) gives v N N |
po="To= o | S dA (11.5)
Finally, the first boundary conditic(jn in {10.6) leads to the relationship
, o
Yoo Tt oo A a (11.6)

0

*) We note that by introducing the variables
1 (7-—1)/28 N 1 <T_1)‘/2N
n= 2 TPo uy ! f0: 2 YPo
0
Equation (11.4) may be reduced to the well-imow form
d3fp a2y v—1 dfe 2]
dnp F oy Ty [1—('2171"") =0
with the boundary conditions

d
fo~d/;;’ 0 for =0, %%1 for 1 -» o0
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in which the integrand is parametrically dependent on p,, . Thus (11.6) 1s
the necessary boundary condition for the outer problem in the first approxi-
mation, relating the quantitles ¥,, and p,, . Thereby, 1t uniquely determines the
constant o , i.e. the shape of the shock wave, and completely closes the
system of relations in the first approximation. The problem of the flow past
a semi-infinite plate in this formulation was solved in [3].

12. We now turn to the second and third approximations. First of all,
by virtue of the second equation in (7.%4) and the boundary condition (10.7),
we have v —1

Pr=—- (Pohy + hopy) =0 (12.1)

The third equation in (7.4), after some transformations and using the
relations obtained for the first approximation, Integrates into

Ry + uguy = 0 (12.2)
This solution satisfies boundary conditic s (10.7), since Hoot Uyg= O
according to (2.8) and (8.7). It also satisfies to the neccessary order of

the approximation the boundary conditions on the wall, which is easily veri-
fied by substituting the expansions (10.5) into (7.6).

Now the first of the momentum equations (7.4), after some manipulations,
leads to the following equation for the function wu; :

” 1 ’ — 2
g Po(wom) + - Nay —[T2E 008 (L Dilu =0 (123

The boundary conditions for it are the second condition in (10.7) and the

no~-slip condition (7.6), i.e.
;1 (0)=0, u, (N)— UO)A'MW:W

mf for N o0 (12.4)
9 A Pinally, the function y, (¥) satis-
// fies Equation
L W,
] .//7 ! 2tpp  wt T
107 ,/,/ The boundary condition for it is the
; ) first condition in (10.7) (*).

As a result of integrating (12.4)
we £ind the value of the function y, (0)
Fig. 1 at the wall, defining the shape of the
wall in the second approximation.
Similarly, we find the system of equations for the third approximation:
integrais

Pa= 'r—';:-i (pohg + kopg) mm O, kz '+‘ Uoglig = 0 (12'5)

wtowe ot s S ot wp?

*) We note that the asymptotic behavior of all the functions of the inner
expansion, as prescribed by the boundary condition (10.6) to (10.8), agrees
completely with the behavior found from considering the differential equa~
tlons for these functions.
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differential equation for the function u.(¥)

i " ”}\__ T 'r'—“i 1—¥—-M‘2 2 i
7 Po (watta)” + - Na —{_—Z-T-m———‘i——i—(w——-{—g?}] ug = 0 (12.6)

u02 3

boundary conditions

Uy (O) = O, Uy (N) — (‘3_2,},‘ IFIQU()O + U10> ]sz/&“w?’Y for N — oo (127)

equation for the funection

’ T‘*‘*‘i I+u2 .
Yy + Ty ————uoz" uy = 0 (12.8)

The solution of thls equation must satisfy the first condition in (10.8).
In the end we can find the value of the function y,(0).

In this manner, the required shape of the wall, at which the pressure
distribution attributed to & semi-infinite plate {Section 11) is realized,

has the form ¥ =y, (0) gl/at1/sy + 42 (0) El/xa+1/3Y (12.9)

We note that this result, in accordance with the estimates of the neg-
lected terms made before, has a relative error of the order E-1y or E-%,
while the first approximation contains 2 relative error of order E-'et'y,

13, As an example we calculated the viscous flow field for vy = 1.4
and o = 1,0 ., The values of the parameters defining the shape of the shock

as well as the pressure distribution, were taken from the solution obtained
in{3], o = 1.£938 and p, ‘= 0.6268,

Integration of Equation {11.4) was carried out by the method of iteration.
and was presented in the form

T v T U (fe-1) 1 i ’
T__ipo“O(k)+[7_1Pou TN o iy ™

0 (k-1) &7 uy oy
g g 1y —11 e
__é:qr : 1 20(1: 1)%('{)_,_?7__7_,“__2"("_1):0 (13.1)
Uy (-1) Uy (k-1)

and as the first approximation for Uo(k) & linear functlon was applied.
The convergence of the iter-

Jo y ations was deflned by the estl-
y T mate
0 E Ty o1y — o gy | < B
50 199 '3 =1
Fig. 2 & = 0.0001 {13.2}

To integrate Equation é13.1)
in each approximation and also to integrate Equations (12.3) and (12.6),
the method of iteration was applied.

The calculated results for the inner (viscous) reglon of the flow are
shown in Pigs. 1 to 5. The body shape in the first spproximation is curve
1, that for the second approximation 1s curve 2.

As is clear from Fig.l, at sufficiently great distances from the leading
edge, the contribution of the term which takes iInto sccount the entropy
effect in the outer flow core becomes unessential.

The shapes of the front part of the body are shown in Flg.Z2.

The profiles of velocity, enthalpy, and density are glven, respectively,
in Pigs. 3 to 5 as a function of the veritable yt-% for values of ¢ = 10,
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100 and 1000, There are also shown the results of the first approximation
[ 3], corresponding to the limiting self-similar solutlon {2 -~ =} .

24 zalﬂj—j 24
E4
-2%/4 /J Kiad ~

16 > ~¢-v]
s / I‘Z"/ N

,_/ L ¥ \\
~ ~ ~~_ -
//;"/M/ ,,m
— S
e PR/ =
/ ‘ u )
p py 0 01 02 03 a4é 4
Fig. 3 Fig. 4

This study shows that considering the problem of hypersonic viscous gas
flow with Mach number N+ = past a slender body as problems in the strong
interaction of a boundary layer at the body surface with the inviscid flow
fleld reglon, permits us to solve
this problem to a higher degree of

¥ $= 70 approximation than has been done
P thus far. Further refinement of
. the results obtained {determining
16 " subsequent terms in the asymptotic
I ,/ {'lﬂfL expansions) leads to the necessity
/ /——"‘ ﬁof"’z (=) of consldering viscosity in the
08 /) outer flow field, and considering
[{ additional terms in the equations
/ {ordinarily neglected in boundary
’/ /,[//2 layer theory) in the inner flow.
1 However, as shown in [1 and 6],
7 24 44 174 such a detalled consideration,
Fig. 5 strictly speaking, is invalid,
since the order of the terms con-
sidered in the Navier-Stokes equations will be the same as the order of the
Burnett terms, which are not included.

24

Using the method of matching inner and outer expansions (as 1s done in
the second part of this paper) together with the method of PLK, apparently,
can solve many other problems in which the inner limit of the outer asympto-
tic solution becomes singular.
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